INTRO TO STATS

09/07/18

Statistics?

- The what:
- A branch of mathematics
- Collection, organization, analysis, interpretation, and presentation of data
- The why:
- Applications broadly to any industry (financial or non-financial)
- Trend towards big data (which is not classical statistics) and predictive analytics
- A method of understanding the world better; perspective is important when understanding statistics that is being presented
- Statistics is as much as an art as it is a science

Probability

- 3 definitions of probability:
- Classical / Theoretical: what are the odds of rolling a 1 on a fair die?
- Empirical: a study has shown that a weighted coin has 623 heads out of 1000 flips; what are the chances of the next flip being a heads?
- Subjective: "I think that Tesla has a 30\% chance of actually going private"
- Komolgorov axioms of probability:

```
(1) \(P(A) \geq 0\) for all \(A \subset S\)
(2) \(P(S)=1\)
(3) If \(A \cap B=\emptyset\),
then \(P(A \cup B)=P(A)+P(B)\)
```


Conditional Probability \& Bayes Theory

- Conditional probability:
- New universe space defined due to a certain event occurring
- $P(A \mid B)=\frac{P(A \cap B)}{P(B)}$; with $P(B)$ being the new universe
- Independence: $P(A)=P(A \mid B)$
- Bayesian theory:
- Conditional probability of evidence occurring provides additional information on the hypothesis itself
- $\quad P(H \mid E)=\frac{P(E \mid H)}{P(E)} \cdot P(H)$
- Note that $\frac{P(B \mid A)}{P(B)}$ is known as the likelihood ratio

Fundamental statistics

- Mean:
- $E[X]=\frac{1}{n} \sum n$
- Measure of central tendency; also referred to as the (long-run) average
- Standard deviation / Variance:
- $\operatorname{Var}(X)=\frac{1}{n} \sum(x-\mu)^{2} ;$ s.d. $=\sqrt{\operatorname{Var}(X)}$
- Measure of dispersion around central tendency
- Variance reflects the sum of squared deviations (sum of deviations from mean itself is always 0 , i.e. $E[X-\mu]=E[X]-\mu=0$)
- Standard deviation is in the same units as the underlying data set

Standard deviation of samples

- Usage of samples:
- When entire population is infinite, or finite but too large to be observed in entirety, samples are used to provide information of the population
- Sample selection can be random or non-random
- Sample is supposed to represent a slice of the population
- Unbiased estimate of population mean / s.d.:
- As implied, you are using the statistics from the sample to infer/estimate the statistics of the population
- Unbiased estimate of pop. mean μ is equivalent to sample mean \bar{x}
- Unbiased estimate of pop. variance

Distributions

- Discrete:
- Random variable can only take on discrete, finite number of values
- E.g. Bernoulli, Binomial, Geometric, Hypergeometric, Poisson, etc.
- Continuous:
- Random variable can take on an infinite range of values; note this does not mean the range of the distribution itself has to be infinite
- E.g. Gaussian, Exponential, Gamma, Chi-squared, etc.
- Komolgorov Axioms:
- Whether discrete or continuous or a mix, a distribution must satisfy Komolgorov's axioms
- Most importantly, the event space of the distribution (discrete summation for discrete, integral summation for continuous) must equal to 1

Central Limit Theorem

- Clarifications on definition:
- CLT applies to iid. distributions as a sample
- Given sufficient observations of iid. distributions in a sample, the sample mean distribution approximates a normal distribution
- Note that CLT does not provide any information on the original distribution itself; original distribution can be both discrete or continuous
- $f_{x}(x)$ has mean \bar{x} and s.d. σ^{2}

Additional tidbits

■ Normal approximations:

- Under certain circumstances, discrete distributions (e.g. Binomial, Poisson) can be approximated to a Normal distribution
- If so, continuity correction is required to account for the differences between a discrete vs. continuous distribution
- Hypothesis testing:
- Hypothesis testing uses a Bayesian approach to obtain a conclusion
- My way of thinking about hypothesis testing is, if the result of the sampling is beyond the critical value, the probability of me randomly obtaining such a result is too small for it to be purely by chance, therefore another factor (e.g. the initial hypothesis being not true) is most likely the cause, and so I reject the null hypothesis

